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Abstract 

This paper is directed toward a mathematical audience and looks at options, or derivatives, from 

a computational standpoint using computer programming with Python. A history of two options 

pricing formulas is given: the binomial pricing model and Black-Scholes’ formula (Cox, Ross, & 

Rubinstein, 1979; Black & Scholes, 1973). The two formulas are compared against one another 

to see the benefits of each. The Black-Scholes model is by far the superior way of pricing 

options. The binomial pricing model has a limit of Black-Scholes formula. The Black-Scholes 

model is tested against real world data, but significant error is found. The error can give an 

implied volatility for the stock, which indicates current stock volatility rather than historic. 

Black-Scholes can also use the error to find arbitrage opportunities in the market. I created a new 

options trading strategy using Python that gives a list of ranked arbitrage opportunities for all 

options in an option chain. The program lets the user know the optimal strike price to buy and 

sell put and call options in order to benefit on the arbitrage opportunities at hand. The future for 

options trading and pricing has not lost its significance since finding the solution 45 years ago. 

 

Keywords: Black-Scholes, option pricing, arbitrage, computer programming 
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Financial Options: History, Computational Analysis, 

 and Future Significance 

 

“In our view, however, derivatives are financial weapons of mass destruction, carrying dangers 

that, while now latent, are potentially lethal.” 

-Warren Buffett, Berkshire Hathaway Annual Report, 2002 

 

Introduction 

This paper is a computational analysis of options and dives into financial derivative 

pricing using computer programming with Python. The history of derivatives and option theory 

is included. Several definitions are given so no prior knowledge is assumed with the target 

audience of the mathematics community. The bulk of the methods and analysis will include two 

option-pricing models: the binomial pricing model and Black-Scholes formula. These 

mathematically challenging procedures are coded into a computer program in Python in order to 

price real options in the market. 

A binomial pricing tree is used to price options of stock. Equations are given to produce 

this value. Python was used to speed up the calculation process, which is lengthy if the tree’s 

number of nodes is scaled up. When the number of nodes in the pricing tree is pushed to infinity, 

Black-Scholes formula falls out in the form of a limit. This formula is discussed briefly with an 

overview of the derivation. Then, the binomial pricing tree is compared to the Black-Scholes 

continuous pricing formula. In theory, both formulas should produce the same answer for the 

value of the option. 
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The optimal formula is used to test the error between option value in today’s market for 

options. The formula’s output may or may not be equal to the real world value. The implications 

of this are discussed in the analysis section. The paper will end with a discussion on the current 

market fluctuations and its affect on the value of options. Since options are used as an insurance 

vehicle, one would expect the volume of options purchased to be higher in times of economic 

instability. The future of options may also be different than it is now. 

 

The Great Unknown 

Much of the formulas and papers written on options were published in the ‘60s and ‘70s. 

I need to learn what the option formulas are and see if one has a benefit over the other. Finding 

the most efficient (least computationally time consuming formula with the least error from real 

intrinsic price) way to price these options using Python. It was not clear what the optimal 

formula is when programming pricing models. It was unknown to me whether these formulas 

still have real world significance. It was interesting to see the error in what Black and Scholes’ 

formula has from the real world, and why this error may occur or what benefits can come from it. 

The current market volatility could hurt the potential validity of the output of the formula. Also, 

an easy, intuitive way to price a large sets of option prices in order to find arbitrage opportunities 

has never been created.  

Area of Interest. Options are well known and the formulas have been established, but it 

is unclear whether they still correlate to the actual market performance of options. In order to 

study option pricing, I must learn how these pricing models were created. Once the optimal 

method is deduced, a comparison between real and intrinsic values for options is studied. Due to 

this uncertainty, I will test the accuracy based on real world data from the market and compare it 
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to the output of the computer programs I built that use the formulas for pricing options. With this 

information, I hope to produce a trading strategy based on any arbitrage opportunities at hand. 

I seek to learn more about options and how they are priced. I want to know how these 

formulas were found and if they are still relevant today. Once I find their relevance, I can project 

this on the future of the options market and create a user-friendly trading strategy for real 

investors to utilize in their trading activity. 

 

Background 

Defining Stock 

A stock is a part of a company sold by the company in order to raise money for growth 

and expansion. A person who buys the stock is called a shareholder (Wilmott, Howison, & 

Dewynne, 1995). Thus, shareholders own a part, or share, of the company and have voting rights 

in company ventures. When a person buys stock, they have a feeling the company might be more 

valuable in the future than it is currently. Therefore, the stock might go up if it was more 

valuable than the current stock price suggests. The purchaser could then sell their stock to 

another buyer and make money on the difference between buying price and selling price. 

 

Defining Option Jargon 

An option, or derivative, gives a buyer the option to buy or sell an underlying stock, the 

underlying, at a later date, or the expiry date (Hull, 1997; Saunders & Cornett, 2019). Only 

stock options are analyzed in this paper, but currency and commodities, such as corn or oranges, 

could also be used as the underlying. In fact, several international companies and banks use 

options on currency to hedge, or remove risk from, currency exchange risk between different 
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countries (Hull & White, 1987; Kim & Kim, 2015). Stock options are bought and sold. When the 

option to sell the underlying is purchased, this is called a put. When the option to buy the 

underlying is purchased, this is called a call. The option has a premium, expiry date, and a strike 

price. The strike price is the price at expiry, or end time, a person would like to buy or sell the 

underlying stock for regardless of actual stock price. The expiry date is the date the option 

expires, and the buyer must make a decision to engage on the option or decline (Bodie, Kane, & 

Marcus, 2018; Saunders & Cornett, 2019; Hull, 1997; Wilmott, Howison, & Dewynne, 1995). 

American options are options that have the ability to be executed on at any time before 

expiry. European options are options that only have execution on at expiry. The premium is a 

fair price required by the writer, or seller, of the option to purchase an option (Hull, 1997). 

When a person is the option seller, the individual makes money on the premium. If the premium 

goes up, the option buyer makes money. If they premium goes down, the option seller makes 

money. If the price is not fair, either the buyer or seller is taken advantage of. Arbitrage is 

buying something with the guarantee of profit when selling (Saunders & Cornett, 2019). 

Arbitragers act on mispriced options. Even a small misprice could create huge profits when 

scaled up. 

Premium prices are immediately sunk, or lost without the ability of regaining, up front 

and will not be returned. If a premium did not exist, options would be the best investing vehicle 

ever. A person could use a strike price near zero on a call option. This would allow unlimited 

profit on all options purchased. The premium is in place to negate this way of investing, which is 

also considered a variation of arbitrage (Wilmott, Howison, & Dewynne, 1995). 
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Significance of the Option 

Options exist in order to reduce the risk of investing. If a person buys stock, they are 

liable for 100% of the loss if the stock goes down. An option holder is only at risk of losing their 

premium if the stock goes below their strike price. The premium will never cost more than the 

stock itself and will usually cost much less. Therefore, the option is the best way to reduce risk in 

investing (Hull, 1997). 

 

Options for Insurance Purposes 

Suppose a person has 100 shares of XYZ Company. Unfortunately, CEO John Doe is 

found guilty of sexual harassment, which severely hurts the stock price of XYZ. Thankfully, the 

person had a put on XYZ Company’s stock, which minimizes the loss felt by this surprise event. 

In this way, it acts exactly like an insurance premium on a car. Options are sometimes used as a 

way of insuring an individual’s investments (Amram & Kulatilaka, 1998). 

 

Put and Call Payoff Variations (Profit/Loss) 

The top two graphs in Figure 1 show a profit/loss graph of buying and selling regular 

stock. When a person buys a stock, they make money when the stock goes up and lose money 

when the stock goes down. The opposite happens when the stock is sold. 
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Figure 1. Option Spread 

 

Source: Star Research, 2000 

 

The buying and selling of puts and calls looks similar for about half of the graph, but 

levels out at a certain point. The reason this occurs is due to the option to not engage in a 

transaction with the stock. Until a person is “in-the-money”, or able to turn a profit on the 

investment, a rational buyer of an option would not act on the option (Hull, 1997; Saunders & 

Cornett, 2019). At this point, the only loss is the premium price until the option is “in-the-

money” where the graph begins to change slope. When selling options, the only profit is made on 

the premium. Money is lost when the seller must pay the buyer of the option (Bodie, Kane, & 

Marcus, 2018; Hull, 1997). 

The value is affected by several variables including time. Instead of just a piecewise 

graph of two lines, time increases the price of the option as shown by Figure 2. As time goes by, 

the value of the option decreases all else being equal. 
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Figure 2. Time Component 

 

Source: Star Research, 2000 

 

Methods 

 In order to determine the best computation method for pricing options, the formulas need 

to be determined and explained. The paper for the binomial pricing model (Cox, Ross, & 

Rubinstein, 1979) came sometime after Black and Scholes paper (1973), but the idea of the 

binomial pricing model was thought of long before Black-Scholes formula. The description of 

how the binomial model works will lay a good groundwork for how Black-Scholes works. This 

paper is not a derivation of both formulas, but one needs to know how both came to be in order 

to understand the forces at play. 

 I will compare the formulas for each model once the formulas are known. Then, a 

comparison between the benefits of each is assessed. Each formula was programmed in Python 

to speed up the calculation time and provide a gateway into real world analysis. The last step will 

involve using the best method for pricing option premiums on real world data and analyzing it 

compared to the theoretical formula value. This process will also be completed using Python due 
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to the web connection abilities within Python. After these results are discussed, I will try to 

devise a way of pricing options in bulk in order to create a new trading strategy for investors in 

the option’s market. 

Analysis/Discussion 

Binomial Pricing Tree 

Figure 3 is a binomial pricing tree. The majority of this project is based on how the 

intrinsic premium for an option is found. Earlier, it was mentioned that the premium should be a 

fair price, but how is a fair price calculated and which method is most efficient or accurate? For 

American options, the premium is found easiest using a discrete binomial pricing tree. This 

allows option premium value to be given at all points in time. Option value can use a partial 

differential equation (PDE) continuous pricing model using a fair amount of stochastic calculus 

(calculus with random processes) and Brownian motion (random motion like that of stock price) 

(Karatzas & Shreve, 2012), which is often referred to as Black-Scholes formula. Since stock 

prices are updated so often, they are thought of as being continuous. 

First, the binomial tree is analyzed for pricing call options. Binomial statistics problems 

have two outcomes (Triola & Lossi, 2018). In the case of a stock, one can assume its value may 

go up or down at any moment in time. Assuming the price changes between nodes, the tree 

allows for a wide range of possible prices. In the farthest column on the right at n=N, the tree 

shows the price of the stock at expiry. Over the option’s life, the stock has several jumps up 

and/or down to get to expiry. For example, 𝑢3 ⋅ 𝑆0 had three up jumps. Logically, the next step is 

to see where u and d come from (Cox, Ross, & Rubinstein, 1979; Wilmott, Howison, & 

Dewynne, 1995). 
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Figure 3. Binomial Pricing Tree 

 
𝑆0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒   
𝑢 = 𝑢𝑝 𝑗𝑢𝑚𝑝 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  
𝑑 = 𝑑𝑜𝑤𝑛 𝑗𝑢𝑚𝑝 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  
𝐸 = 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 

𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑢𝑛𝑡𝑖𝑙  𝑒𝑥𝑝𝑖𝑟𝑎𝑟𝑦  

𝑡 = 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑛  

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑛𝑜𝑑𝑒𝑠  

𝑛 = 𝑠𝑡𝑒𝑝 𝑜𝑟 𝑛𝑜𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑡𝑟𝑒𝑒  

Note: The exponents show how many times an up or down jump have occurred. 

 
 

Equations for A, u, and d 

𝐴 =
𝑒−𝑟⋅𝑑𝑡

2
+ 𝑒(𝑟 +𝑣2)⋅𝑑𝑡 

𝑢 = 𝐴 + √𝐴2 − 1  

𝑑 = 𝐴 − √𝐴2 − 1 

𝑑𝑡 =
𝑇

𝑁−1
  

𝑟 = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 𝑜𝑛 𝑎 1 − 𝑦𝑟. 𝑡𝑟𝑒𝑎𝑠𝑢𝑟𝑦 𝑏𝑖𝑙𝑙  (𝑇 − 𝐵𝑖𝑙𝑙)  

𝑣 = 𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒)  

𝑑𝑡 = 𝑡𝑖𝑚𝑒 𝑝𝑎𝑠𝑠𝑒𝑑 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑡𝑜 𝑛𝑜𝑑𝑒  

 

The key is to find the potential final stock prices at expiry and roll back a premium price 

to initial time zero. This is done by computing the probability of an up and down jump at each 

point, or node. 𝑣 is a percentage, because daily returns are shown in a percentage form using this 

equation: 

𝑠𝑡𝑜𝑐𝑘 𝑟𝑒𝑡𝑢𝑟𝑛 =
𝑆1

𝑆0
− 1 
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𝑆1 is stock price at 𝑡𝑖𝑚𝑒 = 𝑛. 𝑆0 is stock price at 𝑡𝑖𝑚𝑒 = 𝑛 − 1. N is the total number of 

horizontal nodes, which is equal to the number of vertical nodes in the last column. A is used to 

find the magnitude of the up and down jump at each node as seen in the equations for u and d. 

Once this calculation is complete, it is used in a future stock price equation. 𝑢3 ⋅ 𝑆0 is an example 

of the equation at work. The equation for the last column in the tree is: 

𝑆(𝑁, 𝑖) = 𝑢𝑖−1 ⋅ 𝑑𝑁−𝑖 ⋅ 𝑆0 

i is a counter that starts at 0. The payout (P) at each node is calculated as the difference 

between the price of the stock at expiry (S(N,i)) and the strike price, or exercise price (E). It is 

easiest to imagine S and P as N×N matrices thus the S(N,i) format. To signify the option not 

being exercised for negative payouts, the equation for payoff on a call option is: 

𝑃(𝑁, 𝑖) = max (𝑆(𝑁, 𝑖) − 𝐸, 0) 

A put option just needs a reversal of the subtraction. Now, using a form of discounting, 

expected return calculation, and self financing, the tree is rolled back without the addition of any 

extra money into the portfolio, or set, of options (Bodie, Kane, & Marcus, 2018; Wilmott, 

Howison, & Dewynne, 1995). This is where 𝛼 and 𝛽 are introduced. 𝛼 is the number of stock 

purchased in order to provide for the possible payoff for the buyer if the option ends up being 

enacted. 𝛽 is the number of treasury bills purchased to store the cash until more 𝛼 is purchased. 

Since the government contracts these bills, they have almost no risk of default, or inability to 

pay back at maturity. They are also highly liquid, or easy to get the cash back (Saunders & 

Cornett, 2019). Treasury bills are a bank account for the cash needed in the case of more stock 

being purchased. Their equations are as follows (Wilmott, Howison, & Dewynne, 1995): 

𝛼(𝑛 − 1, 𝑖) =
𝑃(𝑛, 𝑖 + 1) − 𝑃(𝑛, 𝑖)

𝑆(𝑛, 𝑖 + 1) − 𝑆(𝑛, 𝑖)
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𝛽(𝑛 − 1, 𝑖) =
𝑃(𝑛, 𝑖 + 1) − 𝛼(𝑛 − 1, 𝑖) ⋅ 𝑆(𝑛, 𝑖 + 1)

1 + (𝑟 ∗ 𝑑𝑡)
 

n is a counter starting at N and reducing by 1 in each run. 𝛼 is dividing the difference of 

payout between two consecutive nodes and stock price between the same nodes in the column 

ahead of 𝛼 and 𝛽. In this case, the final column values are being used for S and P. 𝛽 is the 

difference between payout of the up jump and a multiplication of 𝛼 and the stock price of the up 

jump. The denominator is used as a discounting function. Now, the stock price is calculated 

again for the N-1 column. It is: 

𝑆(𝑛 − 1, 𝑖) = 𝑢𝑖−1 ⋅ 𝑑𝑛−1−𝑖 ⋅ 𝑆0 

The payout equation is now different because it uses the calculated 𝛼 and 𝛽. It looks like: 

𝑃(𝑛 − 1, 𝑖) = 𝛼(𝑛 − 1, 𝑖) ⋅ 𝑆(𝑛 − 1, 𝑖) + 𝛽(𝑛 − 1, 𝑖) 

The process is now complete. 𝛼 and 𝛽 have created a portfolio of stocks and bonds used 

to provide the payout at expiry. At this point, 𝛼 and 𝛽 is calculated to find S and P for the next 

column in decreasing order. This is repeated until S(0,0), or S0, has been reached. The premium 

price is P(0,0) or the current value on the option. 

 

Black-Scholes Formula 

Once the number of nodes in the binomial model reaches infinity, Black-Scholes formula 

is created. The mathematical limit of the binomial model is Black-Scholes formula as seen in 

Figure 4. Fischer Black, mathematician and physicist, and Myron Scholes, an economist at the 

University of Chicago, published the solution in a 1973 paper called, “The pricing of options and 

corporate liabilities.” In this paper, the black-box formula for option value was found. Several 

authors had been close to the formula. In fact, Case Sprenkle created a formula quite similar to 

the final Black-Scholes’ formula. Sprenkle’s formula (1961) is as follows: 
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Sprenkle’s Formula for Call Option Value 

 

𝑂𝑝𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 = 𝑘𝑥𝑁(𝑏1) − 𝑘∗𝑐𝑁(𝑏2)  

 

𝑏1 =
ln(

𝑘𝑥

𝑐
)+

1

2
𝑣2(𝑡∗−𝑡)

𝑣√𝑡∗−𝑡
  

 

𝑏2 =
ln(

𝑘𝑥

𝑐
)−

1

2
𝑣2(𝑡∗−𝑡)

𝑣√𝑡∗−𝑡
  

 

𝑘, 𝑘∗ = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  

𝑥 = 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒  

𝑐 = 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑝𝑟𝑖𝑐𝑒  

𝑡∗ = 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑡𝑒  

𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑎𝑡𝑒  
𝑣 = 𝑎𝑛𝑛𝑢𝑎𝑙 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑠𝑡𝑜𝑐𝑘  

𝑙𝑛 = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚  

𝑁(𝑏) = 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

 

This equation is used for a European call option only. Also, Sprenkle was not able to find 

the solutions for 𝑘 and 𝑘 ∗. The other inputs are similar to the binomial pricing model, which 

makes sense because this equation is the limit of the binomial model. An equation with unknown 

parameters is not easy to solve and not convenient for finance professionals who are the target 

audience for such an equation. Black and Scholes took a different approach in their solution. The 

partial differential path lines up well with a well-known physics problem called the heat 

equation. This equation solves the change in temperature at any point in a subspace at any point 

in time (Bluman & Cole, 1969). This overlap between physics and finance could be the reason it 

took a physicist and an economist to complete the solution. 

Another nice, well-known solution is the cumulative normal density function learned in 

statistics (Bowling, Khasawneh, Kaewkuekool, & Cho, 2009; Triola & Lossi, 2018). The heat 

equation also includes this type of distribution, but the finance PDE needs ran in the opposite 

direction to the heat equation PDE since final time in the heat equation is the starting time for 
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Black-Scholes. Black and Scholes were able to solve the PDE and came to a solution without the 

unknown constants found in Sprenkle’s equation. Black-Scholes formula (1973) is as follows: 

Black and Scholes Formula for European Call and Put Options 

 

𝐶𝑎𝑙𝑙: 𝑤(𝑥, 𝑡) = 𝑥𝑁(𝑑1) − 𝑐𝑒𝑡−𝑡∗
𝑁(𝑑2)  

𝑃𝑢𝑡: 𝑤(𝑥, 𝑡) = 𝑐𝑒𝑡−𝑡∗
𝑁(−𝑑2) − 𝑥𝑁(−𝑑1)  

 

𝑑1 =
ln(

𝑥

𝑐
)+(𝑟+

1

2
𝑣2)(𝑡∗−𝑡)

𝑣√𝑡∗−𝑡
  

𝑑2 =
ln(

𝑥

𝑐
)+(𝑟−

1

2
𝑣2)(𝑡∗−𝑡)

𝑣√𝑡 ∗−𝑡
  

𝑥 = 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒  

𝑐 = 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑝𝑟𝑖𝑐𝑒  

𝑡∗ = 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑡𝑒  

𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑎𝑡𝑒  

𝑟 = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 𝑜𝑛 𝑎 1 − 𝑦𝑟. 𝑡𝑟𝑒𝑎𝑠𝑢𝑟𝑦 𝑏𝑖𝑙𝑙  (𝑇 − 𝐵𝑖𝑙𝑙)  

𝑣 = 𝑎𝑛𝑛𝑢𝑎𝑙 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑠𝑡𝑜𝑐𝑘  

𝑙𝑛 = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚  

𝑁(𝑑) = 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

 

Assumptions 

A key difference between the Sprenkle and Black-Scholes formula is Black-Scholes 

inclusion of 𝑟, or the rate on a one-yr. T-Bill. In order to achieve this solution, Black and Scholes 

had to make a list of seven assumptions (1973): 

1. The T-Bill is constant throughout time. Although this is not true, it does not fluctuate 

much. Even with the fluctuation, the answer does not change drastically. 

 

2. Stock price follows a predictable model. This is not true. Unexpected systematic 

events, or market events, may happen that the model has no way of predicting, such as 

the Great Depression in 1929. 

 

3. The stock pays no dividends. Robert Merton (1973) uses Black and Scholes’ derivation 

to incorporate a dividend. The effect is minor so for convenience, this point will not be 

included. 

 

4. The option is European. Merton (1973) also proved the value of an American option 

without a dividend will have the same value as a European option. It is always optimal  

hold options until maturity on stocks not paying a dividend. 
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5. Buying and selling stock or options incurs no transaction cost. Discounts and benefits 

are given to high frequency traders. Transaction costs may be minimal. Otherwise, an 

infinite amount of transactions (a requirement with infinite time steps) would have ill 

effects on profits. 

 

6. Fractions of stocks and T-Bills are possible to hold. This is not true, but a fraction of 

stock could always be scaled up to a whole number. 

 

7. Short selling has no consequences. These consequences have small effects on the 

intrinsic value of the option. 

 

These assumptions do not have a large effect on the difference of the value Black-Scholes 

finds. Many of the assumptions were explained and make little difference in option value. For 

these reasons, the original Black-Scholes formula is used to evaluate the model’s efficiency. 

 

The Optimal Formula 

With the equations of the binomial pricing model and Black-Scholes completely described, 

they can both be coded into Python. The programming methods from Black-Scholes are not as 

involved as the binomial pricing model. Since Black-Scholes is a black-box version, few lines of 

coded are needed, no matrices are needed, and no loops are required. The raw Python code for 

both models is found in Appendices 1-2. 

In order to analyze the error in the binomial pricing model compared to Black-Scholes, I 

created a graph of the binomial model at several different nodes. The input for both models have 

the exact same arbitrary values. The binomial model approaches a limit which is Black-Scholes 

answer given the same input variables. One model is more beneficial based on error and 

computation time required. Table 1 shows the comparison of Black-Scholes and the pricing tree 

with a different amounts of total nodes. 
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Table 1. 

 

Source: Primary 

 

Black-Scholes is taken to be the real value in the error formula since it is the solution 

with infinite nodes. The computation time of Black-Scholes is very low. The time for 

computation of the binomial tree is almost zero for trees with a small number of total nodes, but 

the error is significant. In order to reach a manageable error (under 5%), the time to complete the 

calculation is far more than Black-Scholes. Figure 4 shows the relationship between Black-

Scholes and nodes in the binomial tree with computation time needed at different amounts of 

total nodes. 

 

 

 

 



FINANCIAL OPTIONS: A COMPUTATIONAL ANALYSIS            19 

Figure 4. 

 

Source: Primary 

 

Black-Scholes is $15.78, and the binomial model approaches this value. Black-Scholes is 

in fact the limit of the binomial pricing model. The benefit of Black-Scholes formula is the speed 

of calculation and the true intrinsic value given.  

 

Real World Comparison 

With the most efficient equation for pricing option premium, real world market premium 

prices for options are studied and compared to what Black-Scholes gives for real world inputs. 

Appendix 2 shows the code used for finding and computing option value using real world data. 

All data was taken on November 11, 2018. The program is able to go to Yahoo Finance and take 
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the last five years of daily stock price data. This data is used to calculate historical volatility. The 

data is also where the program gets the current stock price. 

The internet is also scraped, or analyzed and retrieved, for the current T-Bill rate, which 

is found on the United States Department of Treasury website (USDT, 2018). Making the code 

take inputs for only the essential information makes the user’s experience with the program 

convenient and friendly. The program currently only needs the stock’s ticker (abbreviated market 

name), expiry date, and strike price in order to present a value. Table 2 shows the outputs of the 

code in Appendix 2 for three different companies. 

Table 2. 

 

Source: Primary; Data Found on: (GIS, 2018; KO, 2018; VZ, 2018; USDT, 2018) 

 

For each company, three different strike prices were accessed on the option chain, or list 

of option (call and puts) prices at different strike prices (Hull, 1997). One was deep “in-the-

money”, or at a profitable strike price, for a call. The other two were right on the line of “in-the-

money” and “out-of-the-money” for a call. The time to expiry is 68 days, which is divided by 

365 to put in terms of years; the form Black-Scholes formula needs. The volatility of all stocks 

was low, but the error was significant between the Black-Scholes model and the real world price. 
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At first, one may think this error makes Black-Scholes an invalid way to price options. 

Some error was as high as 100%, but this does not make Black-Scholes useless. The theory is 

analyzed and explained in two main ways. One way finance professionals benefit by this error is 

the introduction of implied volatility (Bodie, Kane, & Marcus, 2018). It is a well-known idea in 

finance that past performance is not equal to future performance. Thus, using historical data to 

calculate volatility is problem some. This error in Black-Scholes is used to find what the market 

is implying the current volatility of the stock may be. 

In order to solve for this, the equation is manipulated to find volatility while making the 

option value equal to the current market value. If an individual tries to solve this, it is quite hard 

and time consuming. The person would need to get volatility out of the normal distribution 

calculation. Instead, one could change the input of volatility until the output of premium price 

matches the value given by Black-Scholes formula. For this reason, finance professionals use 

Black-Scholes model today in industry. 

A separate thought about the error between Black-Scholes and market price is that in the 

future the market would reach Black-Scholes price. Efficient market hypothesis believes that 

markets are efficient and represent all current data (Saunders & Cornett, 2019). Therefore, if 

Black-Scholes quotes a different price, the market should reach that price over time. Now, it is 

clear there is an arbitrage opportunity in some situations. If Black-Scholes gives a quote higher 

than the market value, the market should reach this value. Therefore, if a person buys an option 

at a low price now and it is almost guaranteed to go up, this is an arbitrage opportunity. 

Now, look back at Table 2. Any part that has a positive error represents an arbitrage 

opportunity. The higher the error relates to more profit. Since realistically, these prices may not 

end up at Black-Scholes value, it is best to act on prices that are significantly above the market 
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price. At the very least, one can expect these options to have the greatest probability of going up 

with all else being equal. The same arbitrage is captured in selling, or writing, options (Hull, 

1997). When a person is the option seller, he or she makes money one the premium. If they 

premium goes down, the option seller makes money. Therefore, when the error is negative on 

Table 2, there is an arbitrage opportunity to sell the option at that specific strike price. 

 

Introducing the Arbitrage Option Chain 

If this calculation was completed for every strike price on the option chain, a list of the 

best prices to buy and sell options in order to make money using arbitrage is created. 

Unfortunately, that would be very time consuming. It would be nice to devise a way to price 

several options at once. In Appendix 3, I was able to create a program that does just that. Table 3 

shows that programs output. 

This new, innovative approach at pricing options is very helpful as an options trading 

strategy. The four sub-tables within Table 3 give the rank of arbitrage opportunities in buying 

and selling put and call options for a particular stock at a certain date in the future. I used the 

Coca-Cola option chain for January 18, 2019 (KO, 2018). My program only needs two inputs 

from the user. It needs a stock ticker to access and a date for a specific option chain. All other 

information is scraped from the internet (KO, 2018 USDT, 2018) including the option chain 

being accessed. 

One may expect this program to take a considerable amount of time due to the retrieval of 

so much data from the internet, but I was able to process the program on my computer in 7.53 

seconds for this particular option chain. This time includes operations separate from just 
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calculation for call and put. This time could have been lower with a computer with more 

processing power and better internet speeds. 

Table 3. 

 

Source: Primary; Data Found on: (KO, 2018; USDT, 2018) 

Note: Values enclosed in parentheses are negative. 

 

The left of Table 3 organizes buying puts and calls while the right sorts selling puts and 

calls. The right is ranked on most negative difference between Black-Scholes and market price 
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while the left is ranked on the most positive. This is due to the fact talked about earlier: buyers 

profit when the premium goes up; sellers profit when the premium goes down. 

For example, if John wants to buy an option on Coca-Cola and wants the best chance for 

arbitrage, he can buy a call on KO at a strike price of $44 for $5.75 right now. Black-Scholes 

says this price will move to $5.98 at some point. John could hold this call until the premium 

reaches $5.98 and profit by the amount in the Diff column, or $0.23. On the other hand, if Sally 

wants to sell an option on Coca-Cola and wants the best chance for arbitrage, she can sell a put 

on KO at a strike price of $42 for $5.65 right now. Black-Scholes says this price will move to 

$5.04 at some point. Sally keep this put for sale until the premium reaches $5.98 and profits by 

the amount in the Diff column, or $0.61 even though $0.61 is listed as a negative number. 

 

Conclusion 

The world of options and pricing options is dense. Finance, in general, has a lot of jargon 

and lingo involved. The same goes for the options world. The quest to find and learn the process 

behind pricing option premiums is complete. In the search, two formulas were found that are 

used to price options. The formulas were much different, but had many important similarities. In 

the beginning, the goal was to determine which formula is best and most accurate. I also wanted 

to see if these formulas could still be used in the real world. The equations were found nearly 50 

years ago. Some analysis was done back then, but recently, not as much robustness testing has 

been done. The ultimate goal was to derive a strategy for the real world options market from 

Black and Scholes’ formula. 
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Summary of Findings 

Through this experience, the background and history of pricing options was found. How 

the formulas came to be was not a quick process. Several people contributed to the formula 

Fischer Black and Myron Scholes found for option pricing. One person, Case Sprenkle, had the 

formula almost completely solved. The form of Black and Scholes’ formula was almost the exact 

same as Sprenkle’s formula. The solution is far better than the binomial pricing model based on 

computation time and error incurred. Since the time the formula was first found, the validity and 

usefulness of Black-Scholes has not been lost. There was significant error found when Black-

Scholes was compared to real world data, but this error is used to benefit the market and its 

investors. 

Finance professionals are able to use the equations in at least two useful ways: implied 

volatility and potential arbitrage. Implied volatility is an important indicator of the current state 

of a stock’s volatility. Since historical performance is not the best indicator of future 

performance, implied volatility gives investors a better sense of how volatile the stock currently 

is. Arbitrage opportunity is another direction the error is taken. Investors could look at Black-

Scholes intrinsic value for premium and compare it to the market price. If Black-Scholes formula 

finds the option to be undervalued, an investor could profit on this option. 

Throughout this computation comparison and real world comparison, I was able to code 

these equations into Python for quick calculations and real world input. I was able to produce 

code that is simple for others to use and very practical in use for options trading strategies. An 

arbitrage option chain has never been created, and it is a very useful tool to use. The programs 

were also able to run quickly even with all the calculations being made. 
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Future Study and Last Thoughts 

More analysis needs to be completed on the arbitrage option chain. Another topic to look 

into is the performance of this strategy in the market. Overall, the evidence of a new way to price 

bulk option premiums and produce a trading strategy using this information is very exciting. The 

formulas used in pricing options have not lost their significance to the real world. Several 

industries still use options for many areas. Banks, insurance companies, and individual investors 

all benefit in the trade of options. Options are usual vehicles to hedge investments against risk 

(Amram & Kulatilaka, 1998). Sometimes arbitragers can also benefit off the options market. 

This is where my trading strategy tries to gain an advantage. This strategy needs further testing. 
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Appendix 1 

Binomial Pricing Model – raw Python code: dsp.py 

import numpy as np 

from scipy.stats import norm 

import time 

import pandas as pd 

from pandas_datareader import data as pdr 

import datetime 

import fix_yahoo_finance as yf 

 

def bs(ticker,exp,E): 

    """ 

    Corey's Black-Scholes Option Pricer\n 

    bs(ticker,Expiry Date (exp),Exercise price(E))\n 

    ticker is stock ticker (ex. AAPL)\n 

    exp is mm/dd/yyyy format\n 

    """ 

    start=time.time() 

    start1=time.time() 

 

    yf.pdr_override() 

    slist = (str(datetime.datetime.today()).split()[0]).split("-") 

    s = str(datetime.date(int(slist[0])-5,int(slist[1]),int(slist[2])))   

 

    while True: 

        try: 

            data = pdr.get_data_yahoo(ticker, start = s)  

            break 

        except ValueError: 

            time.sleep(5) 

            continue 

        except OverflowError: 

            slist = s.split("-") 

            slist[0]=int(slist[0])+1 

            s = str(datetime.date(int(slist[0]),int(slist[1]),int(slist[2])))   

            continue 

        break 

         

    print('Done Data Collection',time.time()-start1) 

    start1=time.time() 

 

    data=data[['Close']].copy() 

    vl=float(data.pct_change().std())*np.sqrt(252) 
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    data=data[::-1] 

    price=data.iat[0,0] 

    s=price 

 

    print('Done Volatility',time.time()-start1) 

    start1=time.time() 

 

    #1 year T-Bill Bond rate 

    url='https://www.treasury.gov/resource-center/data-chart-center/interest-

rates/Pages/TextView.aspx?data=yield' 

    tbill_df=pd.read_html(url)[1] 

    bond=float(tbill_df[5].iloc[-1])/100 

    r=bond 

 

    print('Done Bond',time.time()-start1) 

    start1=time.time() 

 

    uexp=int(time.mktime(datetime.datetime.strptime(exp, 

"%m/%d/%Y").timetuple()))-18000 

    today=time.strftime("%m/%d/%Y") 

    utoday=int(time.mktime(datetime.datetime.strptime(today, 

"%m/%d/%Y").timetuple()))-18000 

    diffday=(uexp-utoday)/86400 

    t=diffday/365 

 

    d1=(np.log(s/E)+(r+vl**2/2)*t)/(vl*np.sqrt(t)) 

    d2=d1-(vl*np.sqrt(t)) 

    callpremium=s*norm.cdf(d1)-norm.cdf(d2)*E*np.e**(-r*t) 

 

    print('Done Call',time.time()-start1) 

    start1=time.time() 

 

    putpremium=norm.cdf(-d2)*E*np.e**(-r*t)-s*norm.cdf(-d1) 

    put=callpremium+(E/(1+r)**t)-s 

 

    print('Done Put',time.time()-start1) 

    end=time.time()-start 

 

    print() 

    print('The premium of the call option is $%(cp)4f.' %{'cp':callpremium}) 

    print('The premium of the put option is $%(pp).4f.' %{'pp':putpremium}) 

    print('Put-Call parity says the put is $%(put).4f.' %{'put':put}) 

    print('The current price is $%(price).2f.' %{'price':price}) 

    print('This took %(end).2f seconds.' %{'end':end}) 

    print('Volatility= '+str(vl)) 
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    print('T-bill rate= '+str(r)) 

    print('Days to Maturity= '+str(diffday)) 

    return '' 

 

ticker=input('Ticker: ') 

strike=float(input('Strike Price: ')) 

exp=input('Expiry Date (mm/dd/yyyy): ') 

 

print(bs(ticker,exp,strike)) 
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Appendix 2 

Black-Scholes’ formula – raw Python Code: bs.py 

import numpy as np 

import time 

import pandas as pd 

from pandas_datareader import data as pdr 

import datetime 

import fix_yahoo_finance as yf 

 

def call(N,u,d,E,s,r,dt,S,P,alpha,beta): 

    start1=time.time() 

 

    for i in range(0,N): 

        S[N,i]=u**(i)*d**(N-i)*s 

        P[N,i]=max(S[N,i]-E,0) 

 

    for n in range(N,0,-1):   

        for i in range(0,n): 

            alpha[n-1,i]=(P[n,i+1]-P[n,i])/(S[n,i+1]-S[n,i]) 

            beta[n-1,i]=(P[n,i+1]-alpha[n-1,i]*S[n,i+1])/(1+(r*dt)) 

            S[n-1,i]=u**(i-1)*d**(n-1-i)*s 

            P[n-1,i]=alpha[n-1,i]*S[n-1,i]+beta[n-1,i] 

    premium_price=P[0,0] 

 

    print('Done Call Premium',time.time()-start1) 

    return premium_price 

 

def put(N,u,d,E,s,r,dt,S,P,alpha,beta): 

    start1=time.time() 

 

    for i in range(0,N): 

        S[N,i]=u**(i)*d**(N-i)*s 

        P[N,i]=max(E-S[N,i],0) 

 

    for n in range(N,0,-1):   

        for i in range(0,n): 

            alpha[n-1,i]=(P[n,i+1]-P[n,i])/(S[n,i+1]-S[n,i]) 

            beta[n-1,i]=(P[n,i+1]-alpha[n-1,i]*S[n,i+1])/(1+(r*dt)) 

            S[n-1,i]=u**(i-1)*d**(n-1-i)*s 

            P[n-1,i]=alpha[n-1,i]*S[n-1,i]+beta[n-1,i] 

    premium_price=P[0,0] 

 

    print('Done Put Premium',time.time()-start1) 
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    return premium_price 

 

def dsp(ticker,exp,E,N=2000): 

    """ 

    Corey's Discrete Option Pricer\n 

    dsp(ticker,time(T),nodes on time(N),Exercise price(E))\n 

    ticker is stock ticker (ex. AAPL)\n 

    time in days\n 

    more nodes gives more precise value\n 

    """ 

    start=time.time() 

    start1=time.time() 

 

    yf.pdr_override() 

    slist = (str(datetime.datetime.today()).split()[0]).split("-") 

    s = str(datetime.date(int(slist[0])-5,int(slist[1]),int(slist[2])))   

 

    while True: 

        try: 

            data = pdr.get_data_yahoo(ticker, start = s)  

            break 

        except ValueError: 

            time.sleep(5) 

            continue 

        except OverflowError: 

            slist = s.split("-") 

            slist[0]=int(slist[0])+1 

            s = str(datetime.date(int(slist[0]),int(slist[1]),int(slist[2])))   

            continue 

        break 

 

    print('Done Data Collection',time.time()-start1) 

    start1=time.time() 

 

    data=data[['Close']].copy() 

    vl=float(data.pct_change().std())*np.sqrt(252) 

    data=data[::-1] 

    price=data.iat[0,0] 

    s=price 

 

    print('Done Volatility',time.time()-start1) 

    start1=time.time() 

 

    #1 year T-Bill rate 
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    url='https://www.treasury.gov/resource-center/data-chart-center/interest-

rates/Pages/TextView.aspx?data=yield' 

    tbill_df=pd.read_html(url)[1] 

    r=float(tbill_df[5].iloc[-1])/100 

 

    print('Done T-Bill',time.time()-start1) 

    start1=time.time() 

 

    uexp=int(time.mktime(datetime.datetime.strptime(exp, 

"%m/%d/%Y").timetuple()))-18000 

    today=time.strftime("%m/%d/%Y") 

    utoday=int(time.mktime(datetime.datetime.strptime(today, 

"%m/%d/%Y").timetuple()))-18000 

    diffday=(uexp-utoday)/86400 

    T=diffday/365 

    dt=T/(N-1) 

    A=(.5*(np.exp(-r*dt)+np.exp((r+vl**2)*dt))) 

    u=A+np.sqrt(A**2-1) 

    d=A-np.sqrt(A**2-1) 

 

    print('Done A,u,d',time.time()-start1) 

    start1=time.time() 

 

    S=np.zeros((N,N)) 

    P=np.zeros((N,N)) 

    alpha=np.zeros((N,N)) 

    beta=np.zeros((N,N)) 

    N=N-1 

 

    print('Done Matrix Setup',time.time()-start1) 

 

    callp=call(N,u,d,E,s,r,dt,S,P,alpha,beta) 

    putp=put(N,u,d,E,s,r,dt,S,P,alpha,beta) 

 

    end=time.time()-start 

 

    print() 

    print('The premium of the call option is $%(premium).4f.' 

%{'premium':callp}) 

    print('The premium of the put option is $%(premium).4f.' 

%{'premium':putp}) 

    print('The current price is $%(price).2f.' %{'price':price}) 

    print('This took %(end).2f seconds.' %{'end':end}) 

    return '' 
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ticker=input('Ticker: ') 

strike=float(input('Strike Price: ')) 

exp=input('Expiry Date (mm/dd/yyyy): ') 

nodes=float(input('Steps in tree: ')) 

 

print(dsp(ticker,exp,strike,N=nodes)) 
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Appendix 3 

Black-Scholes Arbitrage Option Chain – raw Python code: bsauto.py 

import numpy as np 

from scipy.stats import norm 

import time 

import pandas as pd 

from pandas_datareader import data as pdr 

import datetime 

import fix_yahoo_finance as yf 

 

def vlpr(ticker): 

    yf.pdr_override() 

    slist = (str(datetime.datetime.today()).split()[0]).split("-") 

    s = str(datetime.date(int(slist[0])-5,int(slist[1]),int(slist[2])))   

 

    while True: 

        try: 

            data = pdr.get_data_yahoo(ticker, start = s)  

            break 

        except ValueError: 

            continue 

        except OverflowError: 

            slist = s.split("-") 

            slist[0]=int(slist[0])+1 

            s = str(datetime.date(int(slist[0]),int(slist[1]),int(slist[2])))   

            continue 

        break 

 

    data=data[['Close']].copy() 

    vl=float(data.pct_change().std())*np.sqrt(252) 

    data=data[::-1] 

    s=data.iat[0,0] 

 

    #1 year T-Bill rate 

    url='https://www.treasury.gov/resource-center/data-chart-center/interest-

rates/Pages/TextView.aspx?data=yield' 

    tbill_df=pd.read_html(url)[1] 

    r=float(tbill_df[5].iloc[-1])/100 

 

    return vl,s,r 

 

def bs(t,E,vl,s,r): 

 

    d1=(np.log(s/E)+(r+vl**2/2)*t)/(vl*np.sqrt(t)) 

    d2=d1-(vl*np.sqrt(t)) 

    callpremium=s*norm.cdf(d1)-norm.cdf(d2)*E*np.e**(-r*t) 

    putpremium=norm.cdf(-d2)*E*np.e**(-r*t)-s*norm.cdf(-d1) 

 

    return callpremium,putpremium 

 

def striker(ticker,exp): 

 

    uexp=int(time.mktime(datetime.datetime.strptime(exp, 

"%m/%d/%Y").timetuple()))-18000 
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    today=time.strftime("%m/%d/%Y") 

    utoday=int(time.mktime(datetime.datetime.strptime(today, 

"%m/%d/%Y").timetuple()))-18000 

    diffday=(uexp-utoday)/86400 

    t=diffday/365 

 

    

url='https://finance.yahoo.com/quote/%(ticker)s/options?p=%(ticker)s&date=%(u

date)s' %{'ticker':ticker,'udate':uexp} 

    optionscall=pd.read_html(url)[0] 

    optionsput=pd.read_html(url)[1] 

     

    vlpr1=vlpr(ticker) 

    vl=vlpr1[0] 

    s=vlpr1[1] 

    r=vlpr1[2] 

 

    pricerange=s*.2 

    low=s-pricerange 

    high=s+pricerange 

 

    #Call Option Spread 

    optionscall=optionscall[['Strike','Strike','Last Price']].copy() 

    optionscall.columns=['Strike','BS Premium','Real Premium'] 

 

    optionscall = optionscall[optionscall['BS Premium'].between(low, high, 

inclusive=True)] 

    for x in range(0,optionscall.shape[0]): 

        optionscall.iat[x,1]=round(bs(t,optionscall.iat[x,1],vl,s,r)[0],3) 

    optionscall['Diff']=optionscall['BS Premium']-optionscall['Real Premium'] 

    optionscallbuy=optionscall 

    optionscallsell=optionscall 

    optionscallbuy = optionscall[optionscall['Diff'].gt(0)] 

    optionscallsell = optionscall[optionscall['Diff'].lt(0)] 

 

    #Put Option Spread 

    optionsput=optionsput[['Strike','Strike','Last Price']].copy() 

    optionsput.columns=['Strike','BS Premium','Real Premium'] 

 

    optionsput = optionsput[optionsput['BS Premium'].between(low, high, 

inclusive=True)] 

    for x in range(0,optionsput.shape[0]): 

        optionsput.iat[x,1]=round(bs(t,optionsput.iat[x,1],vl,s,r)[1],3) 

    optionsput['Diff']=optionsput['BS Premium']-optionsput['Real Premium'] 

    optionsputbuy=optionsput 

    optionsputsell=optionsput 

    optionsputbuy = optionsput[optionsput['Diff'].gt(0)] 

    optionsputsell = optionsput[optionsput['Diff'].lt(0)] 

 

    calltablebuy=optionscallbuy.sort_values(by=['Diff'], 

ascending=False).reset_index(drop=True) 

    calltablesell=optionscallsell.sort_values(by=['Diff'], 

ascending=True).reset_index(drop=True)     

    puttablebuy=optionsputbuy.sort_values(by=['Diff'], 

ascending=False).reset_index(drop=True) 

    puttablesell=optionsputsell.sort_values(by=['Diff'], 

ascending=True).reset_index(drop=True) 
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    #Printing 

    print() 

    print('%(ticker)s Arbitrage Option Chain' %{'ticker':ticker}) 

    print('Buy these call options at these strike prices: ') 

    print(calltablebuy) 

    print('Buy these put options at these strike prices: ') 

    print(puttablebuy) 

    print() 

    print('Sell these call options at these strike prices: ') 

    print(calltablesell) 

    print('Sell these put options at these strike prices: ') 

    print(puttablesell) 

    print() 

    print('Current Stock Price= '+str(s)) 

    print('Volatility= '+str(vl)) 

    print('T-bill rate= '+str(r)) 

    print('Days to Maturity= '+str(diffday)) 

 

    return '' 

 

ticker=input('Ticker: ') 

exp=input('Expiry Date (mm/dd/yyyy): ') 

 

striker(ticker,exp) 


